

Specifications

The complete Agilent Technologies 4285A specifications are listed below. These specifications are the performance standards or limits against which the instrument is tested. When shipped from the factory, the 4285A meets the specifications listed in this section. The specification test procedures are covered in Agilent 4285A Maintenance Manual (Agilent Part Number 04285-90030).

Measurement Functions

Measurement parameters

$|Z|=$ Absolute value of impedance
$|\mathrm{Y}|=$ Absolute value of admittance
$\mathrm{L}=$ Inductance
$\mathrm{C}=$ Capacitance
R = Resistance
$\mathrm{G}=$ Conductance
D $=$ Dissipation factor
Q = Quality factor
$R_{s}=$ Equivalent series resistance
$R_{p}=$ Parallel resistance
$\mathrm{X}=$ Reactance
$B=$ Suceptance
$\theta=$ Phase angle

Combinations of measurement parameters

$\|\mathbf{Z}\|,\|\mathbf{Y}\|$	L, C	R	G
$\theta(\operatorname{deg}), \theta(\mathrm{rad})$	$\mathrm{D}, \mathrm{Q}, \mathrm{R}_{\mathrm{s}}, \mathrm{R}_{\mathrm{p}}, \mathrm{G}$	X	B

Agilent 4285A Precision LCR Meter
 Data Sheet

Mathematical functions

The deviation and the percent of deviation of measurement values from a programmable reference value.

Equivalent measurement circuit

Parallel and series

Ranging

Auto and manual (hold/up/down)

Trigger

Internal, external, BUS (GPIB), and manual

Delay time

Programmable delay from the trigger command to the start of the measurement, 0 to 60.000 s in 1 ms steps.

Measurement terminals

Four-terminal pair

Test cable length

$0 \mathrm{~m}, 1 \mathrm{~m}$, and 2 m selectable

Integration time

Short, medium, and long selectable (refer to Supplemental Performance Characteristics, page 14, for the measurement time)

Averaging

1 to 256 , programmable

Test Signal

Frequency

75 kHz to $30 \mathrm{MHz}, 100 \mathrm{~Hz}$ solution

Frequency accuracy

$\pm 0.01 \%$

Signal modes

Normal-Program selected voltage or current at the measurement terminals when they are opened or shorted, respectively

Constant-Maintains selected voltage or current at the device under test (DUT) independent of changes in the device's impedance.

Signal level

The following test signal level accuracy is specified for an ambient temperature range of $23{ }^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$ and the test cable length is 0 m .

	Mode	Range	Setting accuracy
Voltage	Normal	$5 \mathrm{mV} \mathrm{V}_{\text {rms }}$ to $2 \mathrm{~V}_{\text {rms }}$	$\pm\left\{\left(8+0.4 \mathrm{f}_{\mathrm{m}}\right) \%+1 \mathrm{mV} \mathrm{V}_{\text {rms }}\right\}$
	Constant ${ }^{1}$	10 mV rms to $1 \mathrm{~V}_{\text {rms }}$	$\pm\left\{\left(6+0.2 \mathrm{f}_{\mathrm{m}}\right) \%+1 \mathrm{mV} \mathrm{V}_{\mathrm{rms}}\right\}$
Current	Normal	$200 \mu \mathrm{~A}_{\text {rms }}$ to $20 \mathrm{~mA}_{\text {rms }}$	$\pm\left\{\left(8+1 \mathrm{f}_{\mathrm{m}}\right) \%+40 \mu \mathrm{~A}_{\text {rms }}\right\}$
	Constant ${ }^{1}$	$100 \mu \mathrm{~A}_{\text {rms }}$ to $20 \mathrm{~mA}_{\text {rms }}$	$\pm\left\{\left(6+0.2 \mathrm{f}_{\mathrm{m}}\right) \%+40 \mu \mathrm{~A}_{\text {rms }}\right\}$

1. When the ALC function is set to ON

For the temperature range of $0{ }^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, multiply the temperature induced setting error listed in Figure $1-5$ to the test signal setting accuracy. When test cable length is 1 m or 2 m , add the following error due to test cable length.
$0.2 \times f_{m} \times L[\%]$
where:
$f_{m}=$ Test frequency [MHz]
$L=$ Test cable length [m]

Output impedance

The following output impedance is specified for the test cable length of 0 m :
$\left(25+0.5 f_{m}\right) \Omega \pm\left(10+\frac{2}{3} f_{m}\right) \%$
where:
$f_{m}=$ Test frequency [MHz]

Test signal level monitor

The following test signal level monitor accuracy is specified for an ambient temperature range of $23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$ and the test cable length is 0 m .

Mode	Range	Monitor accuracy
Voltage	$0.01 \mathrm{mV}_{\text {rms }}-2.000 \mathrm{~V}_{\text {rms }}$	$\pm\left\{S_{\text {mon }} \frac{4+0.2 f_{m}}{100}+\frac{S_{\text {set }}}{500}\right\}[\mathrm{V}]$
Current	$0.001 \mu \mathrm{~A}_{\text {rms }}-20.00 \mathrm{~mA}_{\text {rms }}$	

For the temperature range of $0{ }^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, multiply the temperature induced setting error listed in Figure 1-5. When test cable length is 1 m or 2 m , add the following error due to test cable length.
$S_{\text {mon }} \times 0.2 \times f_{m} \times L[V]$
where:
$f_{m}=$ Test frequency [MHz]
$L=$ Test cable length [m]
$S_{m o n}=$ Readout value of test signal level
$S_{s e t}=$ Setting value of test signal level
For example,

Test frequency:	1 MHz
Test signal level:	$1 \mathrm{~V}_{\text {rms }}$
Monitor readout value:	$500 \mathrm{mV}_{\text {rms }}$
Cable length:	1 m
Ambient temperature:	$25^{\circ} \mathrm{C}$

Then, voltage level monitor accuracy V_{ma} is

$$
\begin{aligned}
\Delta \mathrm{V}_{\mathrm{ma}} & =0.5 \times \frac{4+0.2 \times 1}{100}+\frac{1 \times 0.2}{100}+0.5 \times \frac{0.2}{100} \times 1 \times 1 \\
& =0.024[\mathrm{~V}] \\
\mathrm{V}_{\mathrm{ma}} & =\frac{0.024}{0.5} \\
& \approx 4.8[\%]
\end{aligned}
$$

Display Range

Parameter	Range
$\|Z\|, R, X$	0.00001Ω to $99.9999 \mathrm{M} \Omega$
$\|\mathrm{Y}\|, \mathrm{G}, \mathrm{B}$	$0.00001 \mu \mathrm{~S}$ to 99.9999 S
C	0.00001 pF to $999.999 \mu \mathrm{~F}$
L	0.001 nH to 99.9999 H
D	0.000001 to 9.99999
Q	0.01 to 99999.9
θ	-180.000° to 180.000°
Δ	-999.999% to 999.999%

Measurement Accuracy

The measurement accuracy includes stability, temperature coefficient, linearity, repeatability, and calibration interpolation error. The measurement accuracy is specified when all of the following conditions are satisfied:

- Warm-up time: ≥ 30 minutes
- Test cable length: $0 \mathrm{~m}, 1 \mathrm{~m}$ (Agilent 16048A), or 2 m (Agilent 16048D). For the 1 m or 2 m cable length operation (with Agilent 16048A/D), CABLE CORRECTION has been performed
- OPEN and SHORT corrections have been performed.
- The optimum measurement range is selected by matching the DUT's impedance to the effective measuring range shown in Figure 1-1 and Figure 1-2. (For example, if the DUT's impedance is $3 \mathrm{k} \Omega$ and oscillator level is less than or equal to 1 V , the optimum range is the 500Ω range.)
- Measurement accuracy is specified at the following reference planes:
- Test frequency $\leq 1 \mathrm{MHz}$ At the UNKNOWN terminals on the Agilent 4285A front panel or at the end of the standard test leads (Agilent 16048A/D).
- Test frequency $\geq 1.001 \mathrm{MHz}$ At the 1-port terminal of the Agilent 16085B Terminal Adapter, which should be connected to the UNKNOWN terminals of the Agilent 4285A or to the end of the standard test leads (Agilent 16048A/D).

Figure 1-1. Effective measurement range (oscillator level $\leq 1 \mathbf{V}_{\text {rms }}$)

Figure 1-2. Effective measurement range (oscillator level > $\mathbf{1} \mathbf{V}_{\text {rms }}$)

$|Z|,|Y|, L, C, R, X, G$, and B accuracy

$|\mathrm{Z}|,|\mathrm{Y}|, \mathrm{L}, \mathrm{C}, \mathrm{R}, \mathrm{X}, \mathrm{G}$, and B accuracy A_{e} is given as
$A_{e}= \pm\left(A_{n}+A_{c}\right) \times K_{t}[\%]$
where:
$A_{n}=$ Basic accuracy equation given from the A_{1} to A_{16} shown in Table 1-1. The applicable frequency range and impedance range of equations A_{1} to A_{16} are shown in Figure 1-3 and Figure 1-4. (Refer to Basic Accuracy Equations on page 7.)
$A_{c}=$ Cable length factor (Refer to Cable Length Factor on page 10.)
$K_{t}=$ Temperature factor (Refer to Temperature Factor on page 10.)

L, C, X, and B accuracies apply when D_{x} (measured D value) ≤ 0.1.

When $D_{x}>0.1$, multiply A_{e} by $\sqrt{1+} D_{x}^{2}$ for L, C, X, and B accuracies.
R and G accuracies apply when Q_{x} (measured Q value) ≤ 0.1.

When $\mathrm{Q}_{\mathrm{x}}>0.1$, multiply A_{e} by $\sqrt{1+} \mathrm{Q}_{\mathrm{x}}^{2}$ for R and G accuracies. G accuracy given by the equation above applies to the G-B combination only.

D accuracy

D accuracy D_{e} is given as
$D_{e}= \pm \frac{A_{e}}{100}$
where:
$A_{e}=|Z|,|Y|, L, C, R, X, G$, and B accuracy
D accuracy applies when $\mathrm{D}_{\mathrm{x}}($ measured D value $) \leq 0.1$.
When $\mathrm{D}_{\mathrm{x}}>0.1$, multiply D_{e} by $\left(1+\mathrm{D}_{\mathrm{x}}\right)$.

0 accuracy

Q accuracy Q_{e} is given as
$Q_{e}= \pm \frac{Q_{\chi}^{2} \times D_{e}}{1 \mp Q_{\chi} \times D_{e}}$
where:
$Q_{\chi}=$ Measured Q value
$D_{e}=\mathrm{D}$ accuracy
Q accuracy applies when $Q_{x} \times D_{e}<1$.

θ Accuracy

θ accuracy θ_{e} is given as
$\theta_{e}= \pm \frac{180 \times A_{e}}{\pi \times 100} \quad[\mathrm{deg}]$
where:
$A_{e}=|\mathrm{Z}|,|\mathrm{Y}|, \mathrm{L}, \mathrm{C}, \mathrm{R}, \mathrm{X}, \mathrm{G}$, and B accuracy

G Accuracy

G accuracy $G e$ is given as

$$
\begin{gathered}
G_{e}= \pm B_{x} \times D_{e} \\
\left(B_{x}=2 \pi f C_{x}=\frac{1}{2 \pi f L_{x}}\right)
\end{gathered}
$$

where:
$B_{x}=$ Measured B value [S]
$C_{x}=$ Measured C value [F]
$L_{x}=$ Measured L value [H]
$D_{e}=\mathrm{D}$ accuracy
$f=$ Test frequency $[\mathrm{Hz}]$
G accuracy applies when $\mathrm{D}_{\mathrm{x}}($ measured D value $) \leq 0.1$.
G accuracy given by the equation above applies to the $\mathrm{C}_{\mathrm{p}}-\mathrm{G}$ and $\mathrm{L}_{\mathrm{p}}-\mathrm{G}$ combinations only.

R_{p} accuracy

Rp accuracy $R p e$ is given as
$R_{p e}= \pm \frac{R_{p x} \times D_{e}}{D_{x} \mp D_{e}}$
where:
$R_{p x}=$ Measured Rp value $[\Omega$]
$D_{x}=$ Measured D value
$D_{e}=\mathrm{D}$ accuracy
R_{p} accuracy applies when $D_{x}($ measured D value $) \leq 0.1$.

$\mathbf{R}_{\text {s }}$ accuracy

R_{s} accuracy $R_{s e}$ is given as
$R_{s e}= \pm X_{X} \times D_{e} \quad[\Omega]$
$\left(X_{x}=2 \pi f L_{x}=\frac{1}{2 \pi f C_{x}}\right)$
where:
$X_{x}=$ Measured X value $[\Omega]$
$C_{x}=$ Measured C value $[\mathrm{F}]$
$L_{x}=$ Measured L value [H]
$D_{e}=\mathrm{D}$ accuracy
$f=$ Test frequency $[\mathrm{Hz}]$
R_{s} accuracy applies when $D_{x}($ measured D value $) \leq 0.1$.

Basic accuracy equations

The basic accuracy A_{n} is calculated from the following procedure:

1. Determine A_{n} equation from Figure 1-3 or Figure 1-4. In both charts, boundary line belongs to the better accuracy area.

When the oscillator level is $\leq 1 V_{r m s}$, determine A_{n} to be applied, value of K_{i} and value of $K_{o s c}$ from the Figure 1-3. If the determined $K_{o s c} \leq 1$, then round up $K_{\text {osc }}$ to 1 .

When the oscillator level is $>1 \mathrm{~V}_{\mathrm{rms}}$, determine A_{n} to be applied and value of K_{i} from the Figure 1-4.
2. Calculate A_{n} from the formula to be applied. The n accuracy factor included in the A_{n} equation is shown in Table 1-2. Use K_{i} and $K_{o s c}$ factors determined in previous step.

Table 1-1. A_{n} equations

$$
\begin{aligned}
& \mathrm{A}_{1}=N_{1} \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{50}{\left|Z_{m}\right|}\left[0.02 \%+\left(\frac{f_{m}}{30}\right) \cdot 0.1 \%\right] \cdot K_{i} \cdot K_{\text {osc }} \\
& \mathrm{A}_{2}=N_{1} \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{\left|Z_{m}\right|}{50}\left[0.02 \%+\left(\frac{f_{m}}{30}\right) \cdot 0.05 \%\right] \cdot K_{i} \cdot K_{o s c} \\
& \mathrm{~A}_{3}=N_{1} \%+\left(\frac{f_{m}}{5}\right)^{2} \cdot 0.1 \%+\frac{\left|Z_{m}\right|}{500}\left[0.02 \%+\left(\frac{f_{m}}{30}\right) \cdot 0.05 \%\right] \cdot K_{i} \cdot K_{\text {osc }} \\
& \mathrm{A}_{4}=0.3 \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{\left|Z_{m}\right|}{500}\left[0.05 \%+\left(\frac{f_{m}}{30}\right) \cdot 0.1 \%\right] \cdot K_{i} \cdot K_{\text {osc }} \\
& \mathrm{A}_{5}=0.18 \%+\frac{\left|Z_{m}\right|}{5 k} \cdot 0.02 \% \cdot K_{i} \cdot K_{\text {osc }} \\
& \mathrm{A}_{6}=0.18 \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{\left|Z_{m}\right|}{5 k}\left[0.02 \%+\left(\frac{f_{m}}{10}\right) \cdot 0.03 \%\right] \cdot K_{i} \cdot K_{o s c} \\
& \mathrm{~A}_{7}=0.5 \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{\left|Z_{m}\right|}{5 k} \cdot\left(\frac{f_{m}}{30}\right) \cdot 0.2 \% \cdot K_{i} \cdot K_{\text {osc }} \\
& \mathrm{A}_{8}=0.18 \%+\frac{\left|Z_{m}\right|}{50 k} \cdot 0.03 \% \cdot K_{i} \cdot K_{\text {osc }} \\
& \mathrm{A}_{9}=N_{2} \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{100}{\left|Z_{m}\right|}\left[0.02 \%+\left(\frac{f_{m}}{30}\right) \cdot 0.1 \%\right] \cdot K_{i} \\
& \mathrm{~A}_{10}=N_{2} \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{\left|Z_{m}\right|}{100}\left[0.02 \%+\left(\frac{f_{m}}{30}\right) \cdot 0.05 \%\right] \cdot K_{i} \\
& \mathrm{~A}_{11}=0.18 \%+\left(\frac{f_{m}}{5}\right)^{2} \cdot 0.1 \%+\frac{\left|Z_{m}\right|}{1 k}\left[0.02 \%+\left(\frac{f_{m}}{30}\right) \cdot 0.05 \%\right] \cdot K_{i} \\
& \mathrm{~A}_{12}=0.3 \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{\left|Z_{m}\right|}{1 k}\left[0.05 \%+\left(\frac{f_{m}}{30}\right) \cdot 0.1 \%\right] \cdot K_{i} \\
& \mathrm{~A}_{13}=0.18 \%+\frac{\left|Z_{m}\right|}{10 k} \cdot 0.02 \% \cdot K_{i} \\
& \mathrm{~A}_{14}=0.18 \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{\left|Z_{m}\right|}{10 k}\left[0.02 \%+\left(\frac{f_{m}}{10}\right) \cdot 0.03 \%\right] \cdot K_{i} \\
& \left.\mathrm{~A}_{15}=0.5 \%+\left(\frac{f_{m}}{30}\right)^{2} \cdot 3 \%+\frac{\left|Z_{m}\right|}{10 k} \cdot\left(\frac{f_{m}}{30}\right) \cdot 0.2 \%\right] \cdot K_{i} \\
& \mathrm{~A}_{16}=0.18 \%+\frac{\left|Z_{m}\right|}{100 k} \cdot 0.03 \% \cdot K_{i}
\end{aligned}
$$

$\left|Z_{m}\right|$: Absolute value of measured impedance in $[\Omega]$ f_{m} : Test frequency in [MHz]

N accuracy factors

N_{1} and N_{2} in the A_{n} equations have the following values:

Table 1-2. N accuracy factors

Frequency(f)	$\boldsymbol{N}_{\mathbf{1}}$	$\boldsymbol{N}_{\mathbf{2}}$
$75 \mathrm{kHz} \leq \mathrm{f} \leq 200 \mathrm{kHz}$	0.15	0.15
$200 \mathrm{kHz}<\mathrm{f} \leq 3 \mathrm{MHz}$	0.08	0.15
$3 \mathrm{MHz}<\mathrm{f} \leq 5 \mathrm{MHz}$.15	0.38
$5 \mathrm{MHz}<\mathrm{f} \leq 30 \mathrm{MHz}$	0.30	0.38

Figure 1-3. Accuracy equations, K_{i} factor, and $\mathrm{K}_{\text {osc }}$ factor (test signal level $\leq \mathbf{1} \mathbf{V}_{\text {rms }}$)

Figure 1-4. Accuracy equations and K_{i} factor (test signal level $>\mathbf{1} \mathbf{V}_{\text {rms }}$)

Cable length factor

Add the following cable length factor A_{c} to the measurement accuracy when the cable length is set to 1 m (for 16048A) or 2 m (for 16048D) in CABLE field, after performing the cable correction and the OPEN/SHORT correction. When the cable length is $0 \mathrm{~m}, A_{c}$ is 0 percent.
$A_{c}=\frac{f_{m}}{15}+A_{c o}[\%]$
$\mathrm{A}_{\text {co }}$ is the additional error when the impedance range is above $5 \mathrm{k} \Omega$.
$A_{c o}=\frac{\left|Z_{m}\right| \cdot f_{m} \cdot K_{t}}{1000}[\%]$
where:
$f_{m}=$ Test frequency in [MHz]
$Z_{m}=$ Absolute value of measured impedance in $[\mathrm{k} \Omega]$
$K_{I}=$ Test cable length in [m]

Temperature factor

Multiply the sum of the basic accuracy and the cable length factor by the following temperature induced error K_{t}, when the temperature range is $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. The boundary belongs to the smaller multiplier.

| Temperature (0) | 0 | 8 | 18 | 28 | 38 | 48 | 55 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| k_{t} | | ,$~ 3$ | , 2 | >1 | 12 | 13 | >4 | |

Figure 1-5. Temperature factor K_{t}

Measurement Accuracy Calculation Example Example of $\mathrm{L}_{\mathrm{s}}-\mathbf{0}$ accuracy calculation

Measurement conditions

Measured inductance L_{x} of DUT:	220 nH
Measured Q value of DUT:	30
Test signal level:	$1 \mathrm{~V}_{\text {rms }}$
Test frequency f_{m} :	25.2 MHz
Integration time:	LONG
Cable length:	0 m
Operating temperature:	$28^{\circ} \mathrm{C}$

Determine inductance measurement accuracy A_{e}

1. From $|Z|,|Y|, L, C, R, X, G$, and B Accuracy (see page 6), measurement accuracy A_{e} is determined as below:
$A_{e}= \pm\left(A_{n}+A_{c}\right) \times K_{t}$
2. First of all, to determine the measurement accuracy A_{e}, calculate the impedance value from the DUT's inductance value. So the measurement impedance Z_{m} is:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{m}} & =2 \pi \mathrm{f}_{\mathrm{m}} \mathrm{~L}_{\mathrm{x}} \\
& \approx 35[\Omega]
\end{aligned}
$$

where:
$\mathrm{f}_{\mathrm{m}}=$ Test frequency [Hz]
$L_{x}=$ Measured inductance value of the DUT [H]
3. Choose an accuracy chart from Figure 1-3 and Figure 1-4. The oscillator level is $1 \mathrm{~V}_{\mathrm{rms}}$, then Figure 1-3 is chosen for this measurement.
4. Find the frequency point of $f_{m}(25.2 \mathrm{MHz})$ along the X axis in Figure 1-3. Both axes are in log format. Interpolation may be required.
5. Find the impedance point of $Z_{m}(35 \Omega)$ along the Y axis in Figure 1-3 determined in step 2. Both axes are in log format. Interpolation may be required.
6. Mark the intersection of above two steps and determine the basic accuracy equation A_{n}, integration factor K_{i}, and oscillator level factor $\mathrm{K}_{\text {osc }}$.

From:
Test frequency f_{m} : $\quad 25.2 \mathrm{MHz}$
DUT's impedance Z_{m} : 35Ω
Integration time: LONG
Test signal level: $\quad 1 \mathrm{~V}_{\mathrm{rms}}$
Then, $A_{n}=A_{1}, K_{i}=1$, and $K_{o s c}=1$ (rounded from 0.02).
7. From Table 1-1, the actual accuracy equation to be applied is determined as A_{1}.

Then,
$A_{1}=N_{1} \%+\left(\frac{f}{30}\right)^{2} \cdot 3 \%+\frac{50}{\left|Z_{m}\right|}\left[0.02 \%+\left(\frac{f}{30}\right) \cdot 0.1 \%\right] \cdot K_{i} \cdot K_{\text {osc }}$
8. Determine N_{1} from Table 1-2.

From frequency $=25.2 \mathrm{MHz}$, then, $N_{1}=0.3$.
9. Then,

$$
A_{n}=0.3 \%+\left(\frac{25.2}{30}\right)^{2} \cdot 3 \%+\frac{50}{|35|}\left[0.02 \%+\left(\frac{25.2}{30}\right) \cdot 0.1 \%\right] \cdot 1 \cdot 1
$$

$$
\approx 2.6[\%]
$$

10. Cable length is 0 m , then $A_{c}=0$.
11. Operating temperature is $28^{\circ} \mathrm{C}$, then $K_{t}=1$ (from Figure 1-5).
12. Therefore, inductance measurement accuracy A_{e} is:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{e}} & = \pm\left(\mathrm{A}_{\mathrm{n}}+\mathrm{A}_{\mathrm{c}}\right) \times \mathrm{K}_{\mathrm{t}} \\
& = \pm(2.6+0) \times 1 \\
& = \pm 2.6[\%]
\end{aligned}
$$

Determine 0 measurement accuracy $\mathbf{0}_{\text {e }}$

1. From Q Accuracy (see page 6), Q measurement accuracy Q_{e} is determined as below:
$Q_{e}= \pm \frac{Q_{x}^{2} \times D_{e}}{1 \mp Q_{x} \times D_{e}}$
2. Determine D accuracy D_{e} for calculating $Q e$. From the previous step Determine inductance measurement accuracy A^{e} (see page 10), Ae is 2.6 [\%], then:

$$
\begin{aligned}
D_{e} & = \pm \frac{\mathrm{A}_{\mathrm{e}}}{100} \\
& = \pm 0.026
\end{aligned}
$$

3. Therefore Q_{e} is:

$$
\begin{aligned}
Q_{e} & = \pm \frac{Q_{x}^{2} \times D_{e}}{1 \mp Q_{x} \times D_{e}} \\
Q_{e} & = \pm \frac{30^{2} \times 0.026}{1 \mp 30 \times 0.026} \\
& \approx+106 /-13
\end{aligned}
$$

Correction Functions
 Zero open

Eliminates measurement errors due to parasitic stray admittance (C, G) of the test fixture.

Zero short

Eliminates measurement errors due to parasitic residual impedances (L, R) of the test fixture.

Load

Improves the measurement accuracy by using a device whose value is accurately known (a working standard) as a reference.

List Sweep

A maximum of ten frequencies or test signal levels can be programmed. Single or sequential tests can be performed. When Option 4285A-001 is installed, DC bias voltages can also be programmed.

Comparator Function

Ten-bin sorting for the primary measurement parameter, and IN/OUT decision output for the secondary measurement parameter.

Sorting modes

Sequential mode. Sorting into unnested bins with absolute upper and lower limits.

Tolerance mode. Sorting into nested bins with absolute or percent limits.

Bin count

0 to 999999

List sweep comparator

HIGH/IN/LOW decision output for each point in the list sweep table.

Other Functions

Store/Load

Ten instrument control settings, including comparator limits and list sweep programs, can be stored and loaded into and from the internal nonvolatile memory. Ten additional settings can also be stored and loaded from each memory card.

GPIB

All control settings, measured values, comparator limits, and list sweep program can be controlled or monitored. Uses ASCII and 64-bit binary data format. GPIB buffer memory can store measured values for a maximum of 128 measurements and output packed data over the GPIB bus. Complies with IEEE-488.1 and 488.2. The programming language is Test and Measurement Systems Language (TMSL).

GPIB interface functions

SH1, AH1, T5, L4, SR1, RL1, DC1, DT1, C0, E1

Self test

Softkey controllable. Provides a means to confirm proper operation.

Option 4285A-001 (Internal DC Bias)

Adds the variable DC bias voltage function.

DC bias level

The following DC bias level accuracy is specified for an ambient temperature range of $23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$. Multiply the temperature induced setting error, K_{t} listed in Figure 1-5 for the temperature range of $0{ }^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Voltage range	Resolution	Setting accuracy
$\pm(0.000$ to 4.000$) \mathrm{V}$	1 mV	$\pm(0.1 \%$ of setting $+1 \mathrm{mV})$
$\pm(4.002$ to 8.000$) \mathrm{V}$	2 mV	$\pm(0.1 \%$ of setting $+2 \mathrm{mV})$
$\pm(8.005$ to 20.000$) \mathrm{V}$	5 mV	$\pm(0.1 \%$ of setting $+5 \mathrm{mV})$
$\pm(20.01$ to 40.00$) \mathrm{V}$	10 mV	$\pm(0.1 \%$ of setting $+10 \mathrm{mV})$

A maximum DC bias current of 100 mA can be applied to the DUT.

DC bias monitor terminal

DC bias voltage or current can be monitored at the rear panel BNC connector.

The following monitor accuracies are applied when the digital volt meter whose input impedance is \geq $10 \mathrm{M} \Omega$ is used.

- DC bias voltage monitor

DC bias voltage across the DUT $\times 1$
Output impedance: $11 \mathrm{k} \Omega$
Monitor accuracy: $\quad \pm(0.2 \%$ of reading $+2+0.8$

$$
\left.\times \mathrm{I}_{\mathrm{dut}}\right) \mathrm{mV}
$$

where:
$\mathrm{I}_{\text {dut }}$ is current flowing through the DUT in [mA].

- DC bias current monitor

DC bias current through the DUT $\times 10 \Omega(1 \mathrm{~V}$ at 100 mA)

Output impedance: $10 \mathrm{k} \Omega$
Monitor accuracy: $\pm(1 \%$ of reading +0.3$) \mathrm{mA}$

Other Options

Option 4285A-700: No DC bias
Option 4285A-002: Accessory Control Interface Allows the 4285A to control the Agilent 42841A bias current source or the Agilent 42851A precision Q adapter.

The voltage ratio meaurement accuracy, when the 4285A is used with the 42851A precision Q adapter, is described in the 42851A's operation manual.

Option 4285A-201: Handler interface
Option 4285A-202: Handler interface
Option 4285A-301: Scanner interface
Option 4285A-710: Blank panel
Option 4285A-907: Front handle kit
Option 4285A-908: Rack mount kit
Option 4285A-909: Rack flange and handle kit
Option 4285A-915: Add service manual
Option 4285A-ABA: Add English manual
Option 4285A-ABD: Add German manual
Option 4285A-ABJ: Add Japanese manual

Furnished Accessories	
Power cord	Depends on the country where the 4285 A is being used
100Ω resistor box	box Agilent P/N 04285-61001
BNC female-femal Adapter	male Agilent P/N 1250-0080 (4 ea.)
Fuse	Only for Option 4285A-201 Agilent P/N 2110-0046 (2 ea.)
Accessories Available	
Test fixture/test leads	
16034 E T	Test fixture for SMD or chip type DUT, $\mathrm{f} \leq 40 \mathrm{MHz}$
16044A F	Four-terminal test fixture for SMD or chip type DUT, $\mathrm{f} \leq 10 \mathrm{MHz}$
16047A ${ }^{\text {A }}$	Test fixture for axial or radial DUT, $\mathrm{f} \leq 13 \mathrm{MHz}$
16047D ${ }^{\text {D }}$	Test fixture for axial or radial DUT, $\mathrm{f} \leq 40 \mathrm{MHz}$
16048A	Test leads, length 1 m (BNC connector)
16048D	Test leads, length 2 m (BNC connector)
16048G	Test fixture for SMD or chip type DUT, $\mathrm{f} \leq 110 \mathrm{MHz}$
16048H	Test fixture for array-type SMD or chip type DUT, $\mathrm{f} \leq 110 \mathrm{MHz}$
16065A Ex	External voltage bias fixture
16334 A T	Tweezer-type test fixture for SMD or chip type DUT, $\mathrm{f} \leq 15 \mathrm{MHz}$
16451B D	Dielectric test fixture
42842C Bias	Bias current test fixture
42851-61100 SM	SMD test fixture (Option 42842C-201)
DC bias source	
42841 A	Bias current source
Memory card	
04278-89001 M	Memory card, 1 ea.
GPIB interconnection cables	
10833 A GP	GPIB cable, 1 m
10833B GP	GPIB cable, 2 m
10833C GP	GPIB cable, 4 m
10833 D GP	GPIB cable, 0.5 m

Power Requirements

Line voltage

$100,120,220 \mathrm{Vac} \pm 10 \%, 240 \mathrm{Vac}+5 \%-10 \%$

Line frequency

47 to 66 Hz

Power consumption

200 VA max.

Operating Environment

 Temperature$0{ }^{\circ} \mathrm{C}$ to $55{ }^{\circ} \mathrm{C}$

Humidity

$\leq 95 \%$ R.H. at $40{ }^{\circ} \mathrm{C}$

Dimensions

426 (W) by 177 (H) by 498 (D) (mm)

Weight

Approximately 16 kg (35.3 lb., standard)

Display

LCD dot-matrix display

Capable of displaying

Measured values
Control settings
Comparator limits and decisions
List sweep tables
Self test message and annunciations
Number of display digits
6-digits, maximum display count 999999

Supplemental Performance Characteristics

The Agilent 4285A supplemental performance characterisics are listed below. These supplemental performance characteristics are not specifications, but are typical characteristics included as supplemental information for the operator.

Stability

When the following conditions are satisfied,
$\begin{array}{ll}\text { Integration time: } & \text { LONG } \\ \text { Operating temperature: } & \text { Constant operating tem- }\end{array}$ perature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Parameter	$\leq \mathbf{1 ~ M H z}$	$\mathbf{3 0} \mathbf{~ M H z}$			
\|Z	,	Y	, L, C, R	$<0.01 \% /$ day	$<0.05 \% /$ day
D	$<0.0001 /$ day	$<0.0005 /$ day			

Temperature coefficient

When the following conditions are satisfied,

Integration time:	LONG				
Test signal voltage:	$\geq 20 \mathrm{mV}_{\mathrm{rms}}$				
Operating temperature:	$23{ }^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$				
Parameter	$\leq \mathbf{1 ~ M H z}$	$\mathbf{3 0 ~ M H z}$			
\|Z	,	Y	, L, C, R	$<0.004 \% /{ }^{\circ} \mathrm{C}$	$<0.05 \% /{ }^{\circ} \mathrm{C}$
D	$<0.00004 /{ }^{\circ} \mathrm{C}$	$<0.0005 /{ }^{\circ} \mathrm{C}$			

Settling time

Frequency (\mathbf{f}_{m})
$<50 \mathrm{msec}$.
Test signal level
$<100 \mathrm{msec}$.

Measurement range

< 50 msec ./range shift

Input protection

Internal circuit protection, when a charged capacitor is connected to the UNKNOWN terminals.

The maximum capacitor voltage is:
$V_{\max }=\sqrt{\frac{1}{C}} \quad[V]$
where:
$V_{\max }=\leq 200 \mathrm{~V}$
$C=$ Capacitance value in Farads

Measurement time

Typical measurement times from the trigger to the output of EOM at the Handler Interface. (EOM: End of Measurement)

Integration time	Measurement time
SHORT	30 ms
MEDIUM	65 ms
LONG	200 ms

In the following condition an additional measurement time, approx. 300 ms , is added to the measurement time.

Test signal voltage:	$0.51 \mathrm{~V}-2 \mathrm{~V}_{\mathrm{rms}}$
Measurement range:	0Ω Range
Test signal current:	$\geq 22 \mathrm{~mA}$

Display time

Display time for each display format is given as:
MEAS DISPLAY page Approx. 8 ms
BIN No. DISPLAY page Approx. 5 ms
BIN COUNT DISPLAY page Approx. 0.5 ms

GPIB data output time

Internal GPIB data, processing time from EOM output to measurement data output on GPIB lines (excluding display time):

- Approx. 10 ms

Option 4285A-001 (internal DC bias)

Maximum DC bias current when the normal measurement can be performed is 100 mA .

DC bias settling time

When DC bias is set to ON, add 5 ms to the measurement time. This settling time does not include the DUT charge time.

Sum of DC bias settling time plus DUT (capacitor) charge time is shown in the following figure.

Figure 1-6. Sum of the DC bias settling time and DUT (capacitor) charge time

Web Resources

www.agilent.com/find/Icrmeters

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect

Quickly choose and use your test equipment solutions with confidence.

Agilent
 Open

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

LXI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to
uww.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas	
Canada	$(877) 894-4414$
Latin America	3052697500
United States	$(800) 829-4444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Thailand	1800226008

Europe \& Middle East

Austria	013602771571
Belgium	32 (0)2 4049340
Denmark	4570131515
Finland	358 (0)10 8552100
France	0825010 700*
	*0.125 €/minute
Germany	070314646333
Ireland	1890924204
Israel	972-3-9288-504/544
Italy	390292608484
Netherlands	31 (0)20 5472111
Spain	34 (91)631 3300
Sweden	0200-88 2255
Switzerland	0800805353
United Kingdom	44 (0)118 9276201
Other European Countries: www.agilent.com/find/contactus	
Product specifications and descriptions in this document subject to change without notice.	
© Agilent Technologies, Inc. 1995, 2000. 2003, 2008	
Printed in USA, November 12, 2008	
5963-5395E	

