Impedance Basic Theory \& Measurement Parameters

Agilent Technologies

Agenda

\& After completing this course, you will be able to:

- Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- Difference of various Impedance (Z , Zı , Zo)

Definition of Impedance

Agilent Technologies

Definition of Impedance

Z : Total opposition a device or circuit offers to the flow of AC

Impedance plane

(a) Inductive vector on impedance plane
C (Capacitance)

(b) Capacitive vector on impedance plane

Impedance plane

\& Ideal Case
\downarrow
\& Real Case

$$
|Z|=\sqrt{R^{2}+X^{2}}
$$

$$
\theta=\tan ^{-1}(\mathrm{X} / \mathrm{R})
$$

Agilent Technologies

Agenda

\& After completing this course, you will be able to:

- Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- Difference of various Impedance (Z , ZL , Zo)

Quality and Dissipation Factor

-0000 L (Inductance)

$Q=$ quality factor

$$
=\frac{X_{L}}{R}=\frac{-X_{C}}{R}
$$

$-\quad$ (Capacitance)

$D=$ dissipation factor $=\frac{1}{Q}$

Impedance plane

\& Resistance: R

\& Reactance : X

\& Impedance : IZI

\& Phase : θ
\& Quality: Q

\& Dissipation : D

Agilent Technologies

Agenda

\& After completing this course, you will be able to:

- Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- Difference of various Impedance (Z , ZL , Zo)

Parasitic

- No real components are purely resistive or reactive
- Every component is a combination of R, C and L elements
- The unwanted elements are called parasitics

Capacitor Equivalent Circuit

Agenda

\& After completing this course, you will be able to:

- Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- Difference of various Impedance (Z , ZL , Zo)

Component Dependency Factors

- Measurement conditions that determine the measured impedance value
- Effects depend on component materials and manufacturing processes
- Four major factors:
- Test signal frequency
- Test signal level
- DC voltage and current bias
- Environment

Component Dependency Factors

(1) IZI vs Test Signal Frequency

Agilent Technologies

Component Dependency Factors

 (1) IZI vs Test SignalFrequency
Example Capacitor Resonance

Component Dependency Factors

(2) \underline{C} vs. Test Signal Level

- AC voltage dependency of ceramic SMD capacitors for various values of dielectric constant (K)

Component Dependency Factors

(3) \underline{C} vs. DC Voltage Bias

- DC bias voltage dependency of type I and II SMD capacitors

Component Dependency Factors
 (4) L vs. DC Current
 Bias

- DC bias current dependency of cored inductors

Component Dependency Factors

(5) \underline{C} vs. Temperature

- Temperature dependency of ceramic capacitors for different K values

Agenda

\& After completing this course, you will be able to:

- Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- Difference of various Impedance (Z , ZL , Zo)

Impedance Theory of Network Analysis

Agilent Technologies

Impedance Theory of Network Analysis

Smith Chart Review

Z $=\mathbf{R}+\mathrm{j} \mathbf{X}$

Agilent Technologies

Characteristic Impedance of Transmission line

Reflection
Coefficient

$$
\Gamma=\frac{V_{\text {reflected }}}{V_{\text {incident }}}=\rho L \Phi=\frac{z_{\mathrm{L}}-z_{\mathrm{O}}}{z_{\mathrm{L}}+z_{\mathrm{O}}}
$$

Coaxial

Coplanar

Microstrip

Characteristic Impedance of Transmission line

Agilent Technologies

LCR meter \& Impedance Analyzers

E4980A LCR Meter (20 Hz ~ 2 MHz)

E4981A Capacitance Meter ($120 \mathrm{~Hz}, 1 \mathrm{kHz}, 1 \mathrm{MHz}$)

4285A LCR Meter (75 kHz ~ 30 MHz)

High Resistance Meter (10E3 Ω ~ 1.6X10E16 Ω)

4263B LCR Meter (100 Hz ~ 100 kHz)

E4982A LCR Meter (1 MHz ~ 3 GHz)

LCR meter \& Impedance Analyzers

4294A Impedance Analyzer (40 Hz ~ 110 MHz)

E4991A Impedance Analyzer (1 MHz ~ 3 GHz)

