Impedance Basic Theory & Measurement Parameters

Agenda

After completing this course, you will be able to:

- Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- ► Difference of various Impedance (Z, ZL, Z₀)

Definition of Impedance

Definition of Impedance

Z: Total opposition a device or circuit offers to the flow of AC

Impedance plane

(b) Capacitive vector on impedance plane

Impedance plane

Agenda

After completing this course, you will be able to:

- ► Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- ► Difference of various Impedance (Z, ZL, Z0)

7

Quality and Dissipation Factor

Impedance plane

- Resistance : R
- Impedance : IZI
- Quality : Q

- Reactance : X
- Phase : θ
- Dissipation : D

Agenda

After completing this course, you will be able to:

- ► Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- ► Difference of various Impedance (Z, ZL, Z0)

Parasitic

- No real components are purely resistive or reactive
 - Every component is a combination of R, C and L elements
 - The unwanted elements are called parasitics

Capacitor Equivalent Circuit

Agenda

After completing this course, you will be able to:

- ► Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- ► Difference of various Impedance (Z, ZL, Z0)

Component Dependency Factors

- Measurement conditions that determine the measured impedance value
- Effects depend on component materials and manufacturing processes
- Four major factors:
 - Test signal frequency
 - Test signal level
 - DC voltage and current bias
 - Environment

13

Component Dependency Factors

Component Dependency Factors ① IZI vs.<u>Test Signal</u> Frequency

Example Capacitor Resonance

Component Dependency Factors 2 <u>C</u> vs. <u>Test Signal</u> <u>Level</u>

 AC voltage dependency of ceramic SMD capacitors for various values of dielectric constant (K)

$\begin{array}{c} \textbf{Component Dependency Factors} \\ \hline \textbf{3} \ \underline{\textbf{C}} \ \textbf{vs}. \\ \underline{\textbf{DC}} \ \textbf{Voltage} \\ \underline{\textbf{Bias}} \end{array} \end{array}$

 DC bias voltage dependency of type I and II SMD capacitors

Component Dependency Factors

 $(4) L vs. \frac{DC Current}{Bias}$

• DC bias current dependency of cored inductors

Component Dependency Factors 5 <u>C</u> vs. <u>Temperature</u>

> Temperature dependency of ceramic capacitors for different K values

Agenda

After completing this course, you will be able to:

- ► Define impedance
- Define quality and dissipation factors
- Explain parasitics and draw equivalent circuits
- List and describe four component dependency factors
- ► Difference of various Impedance (Z, ZL, Z0)

Impedance Theory of Network Analysis

Impedance Theory of Network Analysis

Smith Chart Review

$$Z = R + jX$$

Characteristic Impedance of Transmission line

Characteristic Impedance of Transmission line

LCR meter & Impedance Analyzers

E4980A LCR Meter (20 Hz ~ 2 MHz)

E4981A Capacitance Meter (120 Hz , 1 kHz , 1 MHz)

4285A LCR Meter (75 kHz ~ 30 MHz)

High Resistance Meter (10E3 $\Omega \sim 1.6X10E16 \Omega$)

4263B LCR Meter (100 Hz ~ 100 kHz)

E4982A LCR Meter (1 MHz ~ 3 GHz)

LCR meter & Impedance Analyzers

4294A Impedance Analyzer (40 Hz ~ 110 MHz)

E4991A Impedance Analyzer (1 MHz ~ 3 GHz)

