

The Fundamentals of IV (Current/Voltage) Measurement of SMU

Why Are Triaxial Cables Needed for Low-Current?

Triaxial cable reduces leakage current by a factor of 100,000,000.

What is a 4-Wire (Kelvin) Measurement?

 \rightarrow Eliminate cable resistance from the measurement

d, but in this case they can be floated up to 250 V above or below chassis ground if desired.

Source/Measure Unit (SMU) Introduction

What is a Source/Measure Unit (SMU)?

Simplified equivalent circuit (2-wire measurements):

Note: The tight integration of these measurement resources yields better accuracy and faster measurement than would an equivalent collection of separate instruments.

Why Would You Use an SMU for IV Measurements?

An SMU integrates the following capabilities into each channel:

- Four-quadrant voltage source
- Four-quadrant current source
- Voltage meter
- Current meter

Here are the two most common modes of operation:

VFIM (Force voltage & measure current)

IFVM (Force current & measure voltage)

Why Use a Benchtop SMU for IV Measurements?

Problem: Limited bench-top space for single-function instruments.

Solution: A benchtop SMU reduces the number of instruments and reduces m essy wiring.

Non-SMU setup example for 4-terminal device SMU setup example for 4 -terminal device

Low current measurement TECHNIQUES

Low-Current Measurement Challenges

- How do I eliminate electromagnetic interference?
- How do I avoid creating ground loops?
- What is measurement ranging and how do I optimize it?
- Why is integration time important in eliminating noise?
- How do I eliminate voltage and current transients?

Use Shielding to Avoid Electromagnetic Interference

Avoiding Ground Loops

Conductive planes tied together at o nly one point cannot have any curre nt flowing between them. Conductive planes tied together at m ultiple points creates a loop for curre nt (a condition to be avoided).

\rightarrow Do not connect up equipment to ground at more than one point!

Understanding Measurement Ranging - 1

All measurement circuitry needs to swi tch in and out various resistors in orde r to measure currents and voltages at different levels.

The measurement range determines the maximum measurement <u>resoluti</u> <u>on</u> that you can obtain*.

*Typically 5 decades below the measurement range.

13

Understanding Measurement Ranging - 2

Current Measurement Range

Integration Time Eliminates Measurement Noise

Integration **DOES NOT** have any effect on the measurement resolution.

Step #1: Perform Self-calibration

Almost all instruments designed for low-current mea surement have some sort of self-calibration mechani sm. It is important that you DO THIS before attempt ing a low-current measurement.

Note: B2900A example shown

Step #2: Select the Correct Current Measurement Range

Most instruments DO NOT boot up in their lowest m easurement range. In this example notice the impro vement in measurement performance obtained by c hanging from the 1 mA current measurement range to the 10 nA current measurement range.

Note: B2900A example shown

From the front panel:

In Single View mode you can specify the current measurement range.

Using 1 mA Current Measurement Range:

Using 10 nA Current Measurement Range:

Step #3: Increase the Integration Time to Eliminate Measurement Noise

In general, low-current measurements need at least 1 power line cycle (PLC) of integration to obtain dec ent results (in this example NORMAL integration). E xtremely low currents and/or noisy environments ma y require LONG integration (16 PLCs). You can use MANUAL integration to select PLC values between t hese two extremes.

From the front panel:

In Single View mode you can select the measure-ment speed (integration time)

Using SHORT(0.01 PLC) integration time: Using NORMAL (1 PLC) integration time: ON Y: I(A) LOG LINEAR 2 ON Y: I(A) LINEAR X := V(V)LOG X: V(V) Auto. Auto Scale Scale +1.00000nA 1 nA +1.00000nA Dump Dump Screen Screen Show Show 1 pA Cursors Cursors IAMM MAA Am Ch 1 100 fA Ch 1 Source Source Ch 2 Ch 2 1 fA Source Source +1.00000 V +0.00100pA , 0.00000 V +1.00000 V +0.00100pA , 0.00000 V LAN LAN G File More.. Trigger File More... Config Function Trigger Result Config Function Result

Note: B2900A example shown

Step #4: Select an Appropriate Measurement Trigger Delay Time

The length of the wait time depends primarily on the size of the voltage step; larger voltage steps require longer wait times. However, the magnitude of the c apacitance being driven also impacts the wait time (I arger C \rightarrow longer wait times).

Note: B2900A example shown

From the front panel:

In Single View mode you can select the measure-ment delay time

Using a Trigger Delay Time of 0 ms

Using a Trigger Delay Time of 200 ms

B2900A SMU series features & benefits

B2900A Series of Precision Source/Measure Units

B2900A Key Features:

- Range of up to ±210 V and ±3 A (DC) / ±10.5 A (pulsed) p rovides wider coverage for testing a variety of devices
- 2. Measurement resolution of 10 fA and 100 nV offers bette r source and measurement performance
- 3. GUI for quick bench-top testing, debug and characterization

Interactive Device Evaluation Can be Performed Entirely from the Front Panel (4 Viewing Modes):

Dual Channel View (2-ch Units Only)

Graph View (I-V, I-t, and V-t plots)

Single Channel View

Roll View (similar to strip chart)

B2900A Series Sourcing Capabilities

(20ms for B2901/02A, 10ms for B2911/12A).

B2900A Series Measurement Capabilities

The B2900A Series has four measurement functions that can be selected for either channel using its front-panel GUI or SCPI commands.

High Speed Digitizing Capability In addition to its intrinsic measurement functions, t he B2900A Series has an advanced trigger design that enables high speed digitizing measurements (20µs for B2901/02A, 10µs for B2911/12A).

B2900A Maximum Voltage and Current Output

	Maximum Voltage	Maximum Current
DC or Pulsed	210 V	0.105 A
	21 V	1.515 A ²
	6 V	3.03 A ²
Pulsed only ¹	200 V	1.515 A
	6 V	10.5 A

- 1. Maximum duty cycle is 2.5%
- 2. On 2-channel units some additional restrictions apply on the combined current outp ut of both channels (please refer to data sheet)

Agilent Has Free "Quick I/V" Software for Customers Wanting PC-Based Instrument Control

FINAL REMARKS

Additional Agilent SMU Instrument Products

Agilent Technologies

Comparison of the B1500A & B1505A

Thank you

